[r-t] Bobs-only Stedman Triples - 70 complete B-block peals
Andrew Johnson
andrew_johnson at uk.ibm.com
Tue Apr 5 07:16:27 BST 2022
70 complete B-block peals
I have found over 1300 sets of an odd number of blocks where the sixes can be rearranged to give 70 complete B-blocks. Some of these can generate peals, and some examples are below.
63 round blocks, signature 28:7+45
2314567QS---------P-----P---------PP-----P--P------P---P--------P---------P---P*1(1)
2654137QS---------P-------P-P---------P-------P-P---------P-------P-P*1(1)
2541367QS--------P-P-------P---------P-P-------P---------P-P-------P-*1(1)
2145763QS--------P--PPP--------PP----P-*1(1)
2714536QS---------P------P--P*1(1)
2614573QS---------P------P--P*1(1)
2145637QS--------P--P------P-*1(1)
https://complib.org/composition/92525 537 bobs
https://complib.org/composition/87216 543 bobs
63 round blocks, signature 26:5+45
2314567QS---------P--------PP---------P------PP--------PPP---------PP-------PP---------P-------PP--------P-P---------P--------PP---------PP*1(1)
5734216QS---------P-------P---------P-P-------P---------P-P---------P-------P-P*1(1)
5246317QS--------PP--------PP*1(1)
5364217QS------P-P-------P-P-*1(1)
5314276QS------P-P-------P-P-*1(1)
https://complib.org/composition/90995 546 bobs
67 round blocks, signature 28:11+45
314567QS---------P--------P-------P--P------P-PP---------P-P---------P-------P*1(1)
5736124QS---------P---PP--------PP-P--P*1(1)
3756142QS---------P------P--P*1(1)
5736412QS---------P------P--P*1(1)
5736241QS---------P------P--P*1(1)
3756421QS---------P------P--P*1(1)
5163724QS--------P--P------P-*1(1)
3265714QS--------P--P------P-*1(1)
3165742QS--------P--P------P-*1(1)
5463712QS--------P--P------P-*1(1)
3465721QS--------P--P------P-*1(1)
https://complib.org/composition/86741 546 bobs, 8 plains in a run
https://complib.org/composition/82261 552 bobs, at most 6 bobs in a run
https://complib.org/composition/86686 558 bobs, 8 plains in a run, at most 6 bobs in a run
2314567QS---------P--------P---------P-------P---------P-P-------P--P------P-PP*1(1)
5274631QS--------PPP--------PPP------P-*1(1)
2471536QS---------P------P--P*1(1)
5741236QS---------P------P--P*1(1)
2617534QS---------P------P--P*1(1)
5167234QS---------P------P--P*1(1)
2514637QS--------P--P------P-*1(1)
5216437QS--------P--P------P-*1(1)
2514376QS--------P--P------P-*1(1)
2576314QS--------P--P------P-*1(1)
2576431QS--------P--P------P-*1(1)
https://complib.org/composition/82116 579 bobs
2314567QS---------P--------P---------P-------P---------P-P-P---------P--P----PP*1(1)
6413275QS--------P--P--PP--------PP--P-*1(1)
5431276QS---------P------P--P*1(1)
3451726QS---------P------P--P*1(1)
6231475QS---------P------P--P*1(1)
3261745QS---------P------P--P*1(1)
5761243QS---------P------P--P*1(1)
6751423QS---------P------P--P*1(1)
3715426QS--------P--P------P-*1(1)
5216743QS--------P--P------P-*1(1)
6415723QS--------P--P------P-*1(1)
https://complib.org/composition/82853 582 bobs, 8 plains in a run
To be continued.
Andrew Johnson
More information about the ringing-theory
mailing list